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Articles from different areas which are closely related to the modelling of the stator of travelling wave ultrasonic motors (TWUMs) are 
reviewed in this work. Thus, important issues relevant to this problem are identified from the areas of vibration of annular plates, laminated 
plate theories, and modelling of piezoelectric transducers. From this integrated point of view, it becomes clear that there are some very 
important issues yet to be addressed in the modelling of TWUMs. Firstly, the influence of material properties and stator dimensions on 
output efficiency, electromechanical coupling coefficients (EMCC) and maximum output energy is to be investigated in more detail. Secondly, 
the modelling of the electric potential field (by explicitly including the charge equation) for TWUMs seems to be a must for better prediction 
of displacements and electric fields close to the resonance, as suggested by some recent works [1]. Moreover, the improvement of current 
models by using shear deformation (or higher order) laminated plate theories (LPTs) in conjunction with approximated methods of solution 
are discussed.
In addition to analytical models, those works using Finite Element and Finite difference Methods (FEM and FDM) for the modelling and 
simulation of the TWUM stator dynamics are reviewed.
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Modelización del estator de un motor piezoeléctrico de onda viajera: una revision integrada y nueva perspectiva

En este trabajo se realiza una revisión de los trabajos de investigación realizados en diversas áreas sobre el modelado del estátor de los motores 
ultrasónicos de onda viajera (TWUMs). Entre los problemas relevantes que se han estudiado podemos citar la vibración de placas anulares, 
las teorías de placas laminadas y el modelado de transductores piezoeléctricos. A raíz de este punto de vista integral se hace manifiesto 
que todavía quedan asuntos importantes que estudiar en el modelado de los TWUMs. En primer lugar, la influencia de las propiedades 
del material y las dimensiones del estátor en la eficiencia del motor, los coeficientes de acoplamiento electromecánico (EMCC) y la máxima 
energía entregada deberían ser estudiados más detenidamente. En segundo lugar, el modelado de la distribución del campo eléctrico en los 
TWUMs (incluyendo la ecuación de carga explícitamente) parece imprescindible para lograr una predicción mejor del desplazamiento y del 
campo eléctrico cerca de la resonancia, como se ha apuntado en referencias actuales [1]. Además, se discute las mejoras que incorporaría a los 
modelos existentes en la actualidad la inclusión de las teorías de placas laminadas (LPTs) con deformaciones de corte (o de orden superior), 
resueltas mediante métodos aproximados. Como complemento a los modelos analíticos, se realiza asimismo una revisión de las técnicas de 
elementos finitos (FEM) y diferencias finitas (FDM) empleadas en la simulación de la dinámica del estátor de los motores TWUM.

Palabras clave: modelos analíticos, motores piezoeléctricos, excitación en resonancia

1. INTRODUCTION

Travelling Wave Ultrasonic motors (TWUs) belong to a relatively 
new class of electromechanical devices, which use the inverse 
piezoelectric effect to obtain linear or rotary motion. Their simple 
structure, high power density, high torque/low speed operation and 
its solid-state nature, with no generation of electromagnetic fields, 
have attracted a wide spread interest.

Behind the simple mechanical construction of TWUMs hides a 
somewhat elegant working principle [2,3,4]. The rotating motion in 
these motors is based on the generation of flexural propagating waves 
on a laminated composite plate (the stator). This is typically made of 
an elastic layer and one or two piezoelectric layers. The propagating 
waves are obtained by superposition of two standing waves, which 
are properly excited in the piezoelectric layer so that they are in 
quadrature. On the surface of the stator the travelling waves cause 
an elliptical motion which is then transmitted by direct contact to the 
rotor. Figure 1 depicts a hollow TWUM of the ring type and shows the 
typical components of piezoelectric travelling wave motors.

The modelling of piezoelectric motors have been a significant 

research topic in the last decade. With regard to TWUMs, an important 
body of knowledge has been achieved on the modelling of the stator 
dynamics [2,4,5,6,7,8,9,10,11,12], and contact mechanics between stator 
and rotor [13,14,15,16,17,18,19]. The latter problem is concerned with 
the frictional transmission of motion and energy at the contact layer, 
which is in itself a too wide and complicated topic to be reviewed here. 
Thus, it is left for a future work. We are concerned in this article with 
the modelling of the stator dynamics.

This work is aimed at reviewing and integrating the most 
significant articles on modelling of piezoelectric laminated transducers 
in general and of the stator of TWUMs in particular so that a broader 
and complete view of this latter problem can be achieved. We believe 
that such an integrated view is important since, some of the knowledge 
from closely related areas can be very valuable for the modelling and 
understanding of common phenomena such as mechanical couplings 
in laminae, electro-mechanical couplings, shear deformations and 
rotary inertia effects, electric field variations within laminates, etc.. 
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Thus, the interference between the areas of vibration of annular plates, 
laminated plate theories, modelling of piezoelectric transducers and 
the modelling of the TWUM stator is examined (see figure 2) . It is 
hoped that this help to lay out future research directions and expose 
some of the underlying physical behaviors of piezoelectric motors.

The articles regarding analytical models are reviewed in section 2 
and those using the finite element and finite difference method (FEM 
and FDM) for modelling and simulation of the stator dynamics are 
presented in section 3. Those works dealing with the modelling of 
electromechanical laminated transducers are reviewed in subsection 
2.1, while those concerning the modelling of heterogeneous laminated 
plates can be found in subsection 2.2. Special attention is paid to 
electromechanical couplings and mechanical couplings in subsection 
2.1.1 and 2.2.1 respectively. The modelling of the electric potential 
within piezoelectric layers is reviewed in subsection 2.2.2. In subsection 
3.1 the use of the FEM for model simplification is shown, including a 
practical example. In Section 4 selected articles on the modelling of 
the stator of TWUMs are reviewed to clearly show the type of models 
currently found in the literature. Finally, a discussion of main issues 
and conclusions are presented.

1.1	 Modelling of the Stator

The models found in the literature can be first classified as either 
analytical models or numerical (finite element and finite difference) 
models. On the one hand, analytical models rely on the use of low 
order theories and various simplifying assumptions (e.g. that the effect 
of shear deformations and rotary inertia can be neglected), so that 
closed-form solutions can be obtained. As a consequence, analytical 
models are usually limited in their capability to model complex 
geometries, e.g., thick plates, plates with radial varying thickness, 
asymmetric laminated structure, etc. On the other hand, while finite 
element analysis (FEA) is imperative for cases of complex geometries, 
it is inconvenient for motor design. The design of a piezoelectric motor 
by means of FEA implies that FEA parametric optimization need to be 
used, which is computationally expensive and time consuming. Thus, 
the choice of either one of these type of models, depends on the final 
use of them and in some cases probably a combination of the analytical 
and numerical approaches could be more appropriated. For instance, 
the analytical modelling of sub-domains and subsequent numerical 
integration of the resulting equations is a feasible alternative, which 
could allow the modelling of ring type motors supported by a thin 
inner plate.

2. ANALYTICAL MODELS OF THE STATOR

The stator of a rotary travelling wave ultrasonic motors (shown in 
figure 1) can be regarded as a composite annular disk which is made of 
one or two layers of piezoelectric ceramics, typically hard PZT (lead-
zirconate-titanate) ceramics, and a layer of an elastic material (e.g 
stainless steel or brass). The disk is generally clamped at its center, 
which is a rigid node of the structure, by means of a thin support 
web. However, it could also be supported at a nodal circle (if there 
is any), as in the Panasonic motor shown in figure 3. In addition, the 
elastic layer is usually toothed to amplify the tangential velocity of 
the surface points. The teeth, however, are not explicitly included in 
analytical models and only their mass is taken into account by lumping 
it together with the mass of the plate.

2.1. Electromechanical modelling of laminate transducers

 The basic electro-elastic composite nature of piezoelectric motors is 
also shared by other piezoelectric transducers, such as the asymmetric 
heterogeneous bimorph [20] and the Moonie transducer [3]. Thus, it 
is not surprising to find an interesting and extensive literature on the 
modelling of composite piezoelectric-metal transducers of various 
geometries, specially beams, rectangular plates and disks. Moreover, 
the analysis and results from some of those works can be valuable 
to properly model the stator of TWUMs, so they are reviewed in the 
following paragraphs.

Figure 1: Hollow piezoelectric motor of the ring type showing the 
typical components of WUMs.

Figure 2: Integrated view of the modelling of TWUM stators.

Figure 3: The Panasonic motor is supported by pins at the nodal 
circle.

Modelling of the travelling wave piezoelectric motor stator: an integrated review and new perspective
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The piezoelectric bimorphs were first studied by C. Baldwin Sawyer 
in 1931, as quoted by Smits [21] (reference [1] in Smits’ article). The first 
works on the heterogeneous bimorph as a device can be traced back to 
early 70’s. The heterogeneous bimorph, also called unimorph by some 
authors [22,23] is a beam or plate made of a piezoelectric ceramic layer 
on top of a nonpiezoelectric elastic layer, as shown in figure 4. W. J. 
Denkmann et al studied the effect of the coupling between extensional 
and flexural deformations on the dynamic response of a disk shaped 
transducer made of a two-ply metal/ceramic laminate. They used 
three analytical methods: uncoupled laminate theory, uncoupled direct 
variational analysis and the finite element method, and compared the 
results for different metal-ceramic transducers.

Steel et al [24] conducted an experimental and theoretical study of 
the quasistatic response of the piezoelectric heterogeneous bimorph. 
They presented results on the bending and stretching of these 
devices.

Smits et al [21] derived the constitutive equations describing the 
relation between the canonical conjugates (i.e. moment and angle 
of deflection, force and deflection at the tip, volume and uniform 
distributed force, and charge and voltage at the electrodes) for series 
and parallel piezoelectric homogeneous bimorphs. Also, in another 
article co-authored by Choi, Smits [20] presented the constituent 
equations for heterogeneous bimorphs. In both articles three mechanical 
boundary conditions are considered: a mechanical moment at the end 
of the beam, a force applied perpendicularly to the tip of the beam, and 
a uniform load applied over the length of the beam.

2.1.1. ELECTROMECHANICAL COUPLING AND ENERGY 
          TRANSMISSION COEFFICIENT.

The electromechanical coupling coefficient (EMCC) and the 
energy transmission coefficient are two very important characteristics 
of piezoelectric transducers, whose meanings are sometimes confused 
[3,25]. On the one hand, the square of the EMCC (k2) is conceptually 

defined as the ratio of convertible mechanical (electrical) energy 
stored within the piezoelectric element to the total supplied electrical 
(mechanical) energy [26]. The EMCC is not a direct measure of the 
transducer efficiency, but a performance index for the utility of its 
material and for the transducer bandwidth [25]. Since no mechanical 
load is applied in this definition, no output work is done. In addition 
the losses are not included in its definition, so not all the stored energy 
can be latter used to do work.

On the other hand, the energy transmission coefficient (λmax) 
is defined as the maximum of the ratio of the output mechanical 
(electrical) energy to the input electrical (mechanical) energy. This is 
certainly the maximum transducer efficiency.

There are several practical definitions for the EMCC [25,26,27] 
depending on how the energy ratio (k2) is calculated. The latest IEEE 
standard of piezoelectricity (ANSI-IEEE Std. 176, 1987) recommends 
the use of the Berlincourt et al formula [28] for a uniform electroelastic 
state and the Mason’s dynamic formula for close to resonance operation 
[26]. The former is:

(1)

where Um, Ue and Ud are the mutual or interaction energy, the elastic 
potential energy, and the electric potential energy respectively. Mason’s 
dynamic formula is:

                                             (2)

where ww  is the resonance frequency, and wa is the nearest anti-
resonance frequency. However, for the analysis of practical transducers 
a different definition is preferred [25], as it is shown next. The 
constitutive integrated equations of most transducers can be easily 
obtained in a four terminal-network expression, of the form:

x = C F
11 + C12E

q = C F
12 + C22E

for the limit w→0, where x, q, F and E are the mechanical displacement, 
the electric charge, the mechanical load and the electric field 
respectively. From these equations, the EMCC is defined as:

	
                                           (3)

The maximum energy transmission (λmax) and the maximum 
mechanical output energy (EOmax) can also be obtained from the four-
terminal constitutive equations as:

(4)

                                       (5)

The computation of the electromechanical coupling and energy 
transmission coefficients for different electromechanical laminate 
transducers has been the objective of several investigations. Thus, they 
are reviewed in the following paragraphs.

Wang et al [29] discussed the electromechanical coupling and 
output efficiency of the bimorph and unimorph actuators based on 
the constitutive equations developed by Smits [20,21]. Three actuator 
characteristics are considered, i.e. the electromechanical coupling 
coefficient, the energy transmission coefficient and the mechanical 
output energy, which are calculated from equations 3, 4 and 5, 
respectively. It is shown that for the unimorph these characteristics 
depend not only on the transverse coupling factor k31 , but also on 
the modulus of elasticity ratio of the materials and the thickness Figure 4: Heterogeneous bimorphs: a) two-layer, b) three-layer.
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ratio of the layers. The results indicate that in order to increase the 
electromechanical coupling and output mechanical energy of the 
bender, it is better to chose a stiffer elastic material.

Adelman and Stavsky [30] obtained the axisymmetric motion of a 
thin disk-shaped unimorph. They used the Kirchhoff assumptions and 
the Boussinesq’s method (reference [6] in Adelman’s article) to convert 
the localized equations of motion and the constitutive equations of 
the layers to globalized plate equations. They plotted the maximum 
static deflection of the disk as a function of the material mechanical 
properties and thickness ratio of the piezoelectric and metal layers, 
for two different types of support. The resulting curves showed only 
one optimal thickness ratio for each pair of materials. Also the optimal 
values were strongly dependent on the type of support.

Chang and Chou [31] investigated the dynamic electromechanical 
characteristics of an asymmetric piezoelectric/elastic laminated beam 
by electroelasticity and the asymptotic method. The axial expansion-
bending coupled motion of the system is separated into quasi-axial 
expansion and quasi-bending based on the clearly different frequency 
distribution of the respective vibration modes. They computed the 
electromechanical coupling coefficient (EMCC) and showed that the 
capability of energy conversion for a piezoelectric laminate beam 
decreases as the applied voltage frequency increases. In order to 
determine the EMCC, they used two different definitions, namely, 
Mason’s dynamic formula 2 and a second method proposed by [27], 
which defines the EMCC as:

	
(6)

where U(d)  is the internal energy of the piezoelectric when the 
electrodes are disconnected, and U(sh) is the internal energy for short-
circuited electrodes. This definition completely agrees with Mason’s 
dynamic formula near resonance and with Berlincourt et al formula 
for the uniform state.

Chang [32] also investigated the dynamic electro-elastic 
characteristics of the asymmetric rectangular piezoelectric/elastic 
laminated plate. The theoretical electro-elastic formulation presented 
in the article uses Kirchhoff-Love hypothesis and assumes the 
Poisson ratios of the materials are identical to make the coupling 
coefficients Bij vanish. Moreover, they neglect the coupling inertia 
since the corresponding term R1 is considered much smaller than 
the translational inertia R0. The eigenvalues and eigenfunctions were 
determined by means of the extended Kantorovic method.

2.2. Vibration of heterogeneous laminated plates

In order to study the vibration of thick heterogeneous plates (such 
as those found in TWUM’s stators), sufficiently accurate theories and 
models need to be chosen, so that the effect of shear deformation, 
rotary inertia, and the different couplings between deformations are 
included.

In general, shear deformation and rotary inertia may be neglected 
for stators where the thickness is small compared to the outer diameter 
and to the wavelength of the highest mode of interest [33,34]. As shown 
by Mindlin [34] when the ratio of the wavelength to the thickness 
of the plate is less than 5 the effect of shear deformation and rotary 
inertia becomes important. Thus, the classical plate theory would 
overestimate natural frequencies and underestimate deformations 
when used for such a case [33,35].

The typical asymmetrical layering of the stator generally results in 
a coupling between extensional and flexural deformation, as well as 
coupling between extensional and rotary inertia [36]. One of the effects 

of the deformational coupling is the reduction in the effective flexural 
stiffness, which in turn lowers the natural frequencies of the plate.

Several fine theories can be used to model asymmetric laminated 
plates: the classical laminated plate theory (CLPT), which is attributed 
in its complete form to Reissner and Stavsky [37]; first order [38] and 
higher order shear deformation theories [33,39,40], with and without 
rotary inertia, are probably the most important approaches. However, 
it is too difficult to obtain closed-form solutions with these theories. 
Thus, few authors have modeled the stator of piezoelectric motors 
as a laminated structure and they used only an approximation of the 
simplest laminated theory (i.e., CLPT)[6].

2.2.1. MECHANICAL COUPLING IN LAMINATED PLATES

In order to properly show the different mechanical coupling 
terms which could be present in a laminated plate, the formulation 
and notation of a first order shear deformation theory in cylindrical 
coordinates is now introduced.

The coordinates and layer numbering conventions are shown in 
figure 5. The rq plane coincides with the midplane of the plate. The 
displacement field is specified as,

where, u1, u2 and u3 are the displacement in the r, θ, and z direction 
respectively; ur, uq and uz are the corresponding midplane displacement; 
and ψ, and ψθ  are the rotations in the rz and θz planes respectively. The 
strain-displacement relations are then derived as:

	

(7)

where the six strain components εi (i=1,2,..,6) are εrr, εθθ, εzz, 2εθz, 2εrz 
and 2εrθ respectively; and  ε0

i  and κ0
i are the midplane strains and 

curvatures respectively.

Figure 5: Typical axis an layer numbering conventions.v

Modelling of the travelling wave piezoelectric motor stator: an integrated review and new perspective
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The equations of motion are then obtained by means of the 
Hamilton’s principle:

(8)

where the first variation of the Lagragian δL is found as:

(9)

here Π and K are the potential and kinetic energies; Ni, Qi and Mi are 
the force and moment resultants; q is the distributed transverse force; 
and the integral terms of regions from C1 to C5 corresponds to the 
natural boundary conditions (i.e. moments and force resultants). The 
equations of motion and boundary conditions can then be obtained by 
substituting equation 7 into equation 9, then substituting this result 
into 8, and integrating by parts.

The constitutive equations of a laminated plate (see for instance, 
[33,37,41]) can be written in matrix form as:

(10)

(11)

The matrix [A], [B] and [D] can be calculated from the generalized 
plane stress moduli cij of the n layers as:

	
(12)

(13)

where Aij (i,j=4,5) denote the stiffness coefficients and Ki are the shear 
correction factors.

It can be observed that, in order to eliminate the coupling between 
extensional and flexural deformation the matrix [B] must be zero. 
It turns out that, there are two cases for which matrix [B] becomes 
zero, firstly if all materials making up the laminate plate have the 
same Poisson ratio ν, there exists a reference neutral plane which 
completely uncouples the deformation. Secondly, if the laminates are 
symmetric (in thickness and material) with respect to the midplane, 
the deformations also become uncoupled [23].

On the other hand, the translational, coupling and rotary inertia I0, 
I1 and I2, respectively, can be expressed as:

	
(14)

In this case, even if the Poisson ratios of the materials are different 
the coupling inertia I1 becomes null when the reference plane is chosen 
at:

	
(15)

2.2.2. STRAIN INDUCED METHODS AND MODELLING 
          OF THE ELECTRIC POTENTIAL

In order to model heterogeneous laminated plates, which are 
made of piezoelectric and nonpiezoelectric layers, the piezoelectric 

effect needs to be considered in the constitutive relationships. For 
a piezoelectric layer, the constitutive equations can be found from 
the electromechanical coupling, dielectric and mechanical stiffness 
matrices as:

(16)

where cij, eij and ki are the elastic, piezoelectric and dielectric permittivity 
constants, respectively. In these equations the plane stress values for 
the constants need to be used [5] and the superscripts E and S refer to 
values taken at constant electric field and constant strain, respectively. 
In addition, the Lagragian of equation 9 needs to be augmented with 
the terms corresponding to the electric energy stored within the 
piezoelectric ceramic and the potential energy due to electromechanical 
coupling. These terms can be found to be:

                                      (17)

                                (18)

where S is the strain matrix. The piezoelectric constants e are 
determined from:  e = dcE, where d = [d31 d31 0] for most PZT ceramics.

Most of the models for heterogeneous laminated plates use strain 
induced methods, i.e. they include the piezoelectric effect in the 
constitutive relationships only and the charge equations of electro-
elasticity are usually ignored, as in the formulation just presented.

It is well known that, for most piezoelectric structures, the elastic 
wavelengths are physically much smaller than the electromagnetic 
wavelengths. Consequently, the quasi-static approximation of 
Maxwell’s equations can be used [42]. Thus, the electric field and 
charge equations become:

where E, φ and D are the electric field, the scalar potential function and 
the electric displacement, respectively.

The decision of whether to model the electric potential field or not 
mainly depends on the thickness of the piezoelectric layer. A typical 
piezoelectric material used for TWUM’s (i.e. PZT ceramics) is relatively 
stiff, when compared against PVDF (polyvinyledene flouride) for 
instance, so the thicker the layer the smaller the effective electric field 
[39], which in turn reduces the resulting deflections. Moreover, the 
coupling of the charge equations and the momentum equations is 
increased through the dielectric constant, for that case. Some of the 
works which include the modelling of the electric field are mentioned 
in the following paragraphs.

Tiersten (1969) [43] modeled single-layer piezoelectric plates and 
included the charge equation. Also, Tzou and Zhong (1993) [44] used 
first-order shear deformation to model piezoelectric shells and included 
the charge equation. The plate equations were then derived for single 
piezoelectric layer. Most recently, J. A. Mitchell and J.N. Reddy (1995) 
[39] presented a refined third-order laminated plate theory, including 
electric potential. The theory accounts for shear deformation without 
using correction factors and model the potential function on a discrete 
layer approximation, equivalent to modelling the variation of this 
function with 1-D finite elements.

M. C. Ray et al presented a static analysis of a simply supported 
“smart” infinite plate (i.e. a substrate of elastic material sandwiched 
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between two layers of piezoelectric materials), under cylidrincal 
bending. The material of sensor and actuator layers is PVDF. The 
electric potential functions across the thickness of the sensor and 
actuator layer were found to be fairly linear.

P. Heyliger and D.A. Saravanos (1995)[45] developed exact 
solutions for predicting the coupled electromechanical vibration 
characteristics of simply supported rectangular laminated plates with 
embedded piezoelectric layers. They used the constitutive equations 
for piezoelectric materials and the charge equation of electrostatics, 
assumed for each layer, to solve the 3-D problem of elasticity. At the 
interfaces between layers, the continuity conditions on displacement, 
traction, potential, and electric displacement were established. 
The modal analysis is solved by assuming that the displacement 
components and the electrostatic potential have the following form:

where U, V, W and Φ are constants, s is an unknown to be determined, 
p=mxπ/lx, q=myπ/ly, mx and my are the positive integers used for the modes 
of vibration. The substitution of these expressions into the structure 
differential equations yields a system of equations whose nontrivial 
solution (when the determinant is zero) is then used to determine the 
value s and the natural frequencies based on an iterative scheme. The 
results of this study also demonstrated the need for a proper modelling 
of the electric potential within the piezoelectric layers.

J. H. Huang [46] and T. Wu studied the fully coupled response 
characteristics of composites plates made of fiber response composite 
laminates and piezoelectric layers. They assumed that the electric 
potential has a quadratic distribution through the thickness direction, 
which is based on the work of Rogacheva [47], who observed a linear 
distribution of the electric field.

The commonly used assumption of linear variation of potential 
inside piezoelectric layers was also questioned by S. V. Gopinathan 
et al (1999) [1]. The mathematical formulation used to obtain the 
governing equations in their work is similar to that of Heyliger’s 
article [45] but they include a damping term in the dynamic field 
equations. The stress, strain and electric field distributions of a 
simply supported rectangular single layer of piezoelectric material 
and a three layered heterogeneous laminate are evaluated under 
harmonic forcing potentials. In the latter case, the laminate consists of 
a composite orthotropic layer sandwiched between two piezoelectric 
layers. In addition, two different forcing frequencies were considered, 
one much lower (0.5ω1) than the first bending mode frequency and 
the other closer (0.95ω1) to that frequency. They observed that close 
to the resonant frequency the electric field is not constant inside the 
piezoelectric layer.

In a most recent paper Gopinathan et al (2000) [1] reviewed 
different laminated plate theories used for the modelling of laminated 
composite beams and compared the results of using a first order shear 
deformation theory (FSDT) with the above mentioned 3D formulation, 
which explicitly includes the charge equation. They found that for a 3-
layer very thin beam, with an aspect ratio (AR=l/h) of 50 the FSDT gives 
the same electric field values than the 3D formulation and estimates 
the first four bending mode frequencies with an error of less than 3%. 
They also reported that when a moderately thin plate (AR=20) was 
excited at 90% of the first resonance frequency, the FSDT predicts the 
inplane displacements, transverse displacements and electric potential 
with errors of 45%, 25% and 42% respectively, which are quite large 
and should be experimentally confirmed.

3. FINITE ELEMENT AND FINITE DIFFERENCE ANALY-
SIS OF THE STATOR

As mentioned earlier the stator can also be modelled by means of 
the finite element method (FEM). The stress, strain, and electric field 
within the structure are readily obtained in the post-processing stage 
of program execution. Of course any given shape and type of material 
can be selected for design. The main drawback of this method is that 
parametric optimization of the structure is computationally expensive 
and time consuming. For instance, during mechanical design of the 
motor, it is desirable to know, for a given set of specifications, the 
thickness and young module ratios of the layer materials, the inner 
radio and the axial external load that yield a maximum energy 
conversion efficiency. Thus, for each iteration of the search engine a 
new mesh needs to be generated, its resonant frequency needs to be 
found and the displacement of the nodes, element solution and electric 
fields needs to be found for the resonant frequency. The FEM is very 
useful though for analysis of a given structure and prediction of the 
final displacement of the stator and the rotor as well.

J. Krome and J. Wallaschek [12] used the 3-D finite element method 
to investigate the influence of the shape of the piezoelectric ceramic on 
the vibration of the stator. By means of the variational principle, they 
first found the coupled finite element matrix equation which includes 
the mechanical and electrical degrees of freedom. Afterward, through 
static condensation of the electrical degrees of freedom, the equations 
were reduced to a generalized eigenvalue problem.

They compared the eigenmodes and amplitudes of the harmonic 
response for two cases, a continuous ceramic ring and independent 
ceramic segments. In the latter case the eigenmode is not symmetric 
(there appeared symmetry disturbances) and the amplitude of the 
flexural vibration is smaller than for the continuous ceramic. Symmetry 
of the eigenmode is very desirable to yield an uniform contact between 
stator and rotor.

While some authors prefer to use 3-D FEM to accurately predict 
the modal frequencies and transient response of the stator [12,49], 
others have tried to avoid the drawbacks above mentioned, by using 
modified finite elements and finite difference techniques. Y. Bar-
Cohen et al (1998) [50] used modified annular finite elements which 
are based on the symmetrical characteristics of rotary piezoelectric 
motors. The details of the method can be found in [51]. Hagedorn et 
al [8] approximated the partial differential equation of the varying 
thickness plate by centered finite differences. They split the radius into 
intervals so that the thickness h(r) is piecewise continuous. The rotary 
inertia was included in the formulation but the shear deformations 
were neglected.

In contrast to 3-D FEM, were frequencies are found in increasing 
order, the last two alternative methods allow to choose a specific 
vibrational mode prior to the calculation of its frequency and mode 
shape.

3.1. Use of FEA to evaluate model simplification

Apart from using FEA for prediction of the response of a particular 
stator design, the finite element method can also be used for sensitivity 
analysis. Thus, if a particular element of the stator (e.g. teeth, chamfers, 
supporting web, step etc.) does not greatly influence the harmonic 
response or the natural frequencies of the structure, it could be omitted 
or the structure could be somehow simplified for that particular 
analysis.

A practical example is presented now of the use of ANSYS56 
FEM program to evaluate a model simplification, which consists on 
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the removal of the supporting inner plate (shown in figure 6) when 
determining the modal frequencies of the stator.

The main hypothesis is that, between a specific range of relative 
dimensions of the inner web, the flexural mode frequencies of a clamped 
stator could be found by omitting the inner web and assuming that the 
inner and outer surfaces, r=a and r=b, are free of constraints. In other 
words, the question is: are the flexural mode frequencies of a “weakly” 
inner supported stator close to those of an “unsupported” stator?

The influence of the thickness of the inner plate on the mode 
frequency was first examined. Three different values of the thickness 
ratio ts /tw were used while others dimensions were kept fixed at 
a=19.5, b=25 and c=35 mm. The results from the modal analysis for 
these values is presented in Table I. The values in parenthesis are the 
percent of error of each frequency with respect to the corresponding 
flexural mode frequency of the unconstrained annular plate. Its is 
remarkable that for a relatively small thickness ratio (ts /tw =6) the error 
is less than 5%.

Table I: Flexural mode frequencies for different ts/tw ratios 
(a=19.5).

b=25 mm, c=35 mm
Flexural Mode Freq. (kHz)

n=3 n=4 n=5
Free-free 21.40 39.50 60.79

Clamped, ts /tw = 10 21.63(1.1) 39.61(.30) 60.92(.21)
Clamped, ts /tw = 7.5 21.91(2.4) 39.60(.25) 61.39(.98)
Clamped, ts /tw = 6.0 22.27(4.1) 39.65(.38) 60.82(0.05)

There are, of course, other dimensions that could further increase 
the frequency difference between the inner clamped and the free 
annular plate. Thus, the influence of the plate diameters a, b and c 
over the flexural mode frequencies was considered by comparing the 
results for different values of the ratio c/(b-a). The results of this last 
investigation are presented in Table II.

Table II: Flexural mode frequencies for different c/(b-a) values.

b=25 mm, c=35 mm
Flexural Mode Freq. (kHz)

n=3 n=4 n=5
Free-free 21.40 39.50 60.79
Clamped, c/(b-a) = 6.36 21.63(1.1) 39.61(.30) 60.92(.21)
Clamped, c/(b-a) = 1.7 21.08(1.5) 39.55(.12) 61.05(.42)
b=17.5 mm, c=35 mm
Free-free 25.28 45.65 69.99
Clamped, c/(b-a) = 2.6 25.09(.63) 44.86(1.7) 68.56(2.0)

It can be observed that the resulting percent of error, for a relatively 
wide range of dimensions and vibration modes remains less than 5%, 
and for very thin inner plates ts /tw = 10 is less than 1%.

4. DISCUSSION

In this section, some important issues which have emerged from 
the review are discussed as an attempt to outline future directions for 
improvement of the modelling and design of TWUMS.

• Even though, to the best of our knowledge, only one author [6] 
used laminated plates theories (LPTs) to model TWUMs, we believe 
that by using this approach an important insight is gained on the role 
of the different variables of the stator. Thus, it is easy to see for instance, 
how the material properties and dimensions of the laminates affect 
the mechanical couplings of the plate. For non-symmetric laminated 
plates, in general, the extensional and flexural deformations are 
coupled through matrix [B] in the constitutive equations 10. Thus, the 

extensional strains induced by the piezoelectric layer lead to moment 
resultants {M} in the composite plate. It can be seen that these moments 
could either increase or decrease the bending deformations depending 
on the sign of the elements of matrix [B]. These elements, in turn, 
depend on the elasticity modulus and thickness ratio, and Possion 
coefficients of the materials making of the laminate. In addition, by 
using LPTs it is straightforward to add laminates, to take into account 
adhesive layers for example. In such a case only the elements of [A], 
[B] and [D] need to be modified.

• The relation of mechanical parameters (i. e. geometry and 
material properties) to the efficiency, electromechanical coupling and 
output power of the stator is another important related area which 
deserves more attention. The few contributions are mainly on the 
optimization of an estimated output efficiency of the motor as function 
of the thickness ratio only [9,10,11]. However, the influence of other 
dimensions and material properties (e.g. outer diameter to inner 
diameter ratio and modulus of elasticity ratio) on the efficiency and 
other performance measures needs to be investigated. In that sense, 
since a ring type TWUM can be thought as a “circular” beam with 
joined ends, the work of Wang et al [29] for heterogeneous bimorphs 
can be somehow extended to TWUMS. They found that in order to 
increase the electromechanical coupling and output mechanical energy 
of the bender, it is better to choose a stiffer elastic material.

• In order to accurately predict the resonant frequencies and 
modal displacements, it is important to include the effects of 
shear deformation and rotary inertia for thick stators. When shear 
deformation and rotary inertia are not taken into account, the model 
underestimate deformations and overestimate the resonant frequencies 
[33,35]. In fact for a particular plate the shear deformation plate 
theories produce more modal frequencies (i.e. more vibration modes) 
on a given frequency range [35]. Analytical closed form solutions for 
shear deformation and higher order laminated plate theories (LPTs) 
are too difficult to obtain. However, approximated solutions based on 
methods such as the Ritz`s method and the finite difference method 
are good alternatives. These approaches allow not only to include the 
effects of shear deformation and rotary inertia, but also to model radial 
variations of the plate thickness. In addition, since this approximated 
methods are computationally less expensive than the FEM, parametric 
optimization is possible.

• For thick PZT ceramics, when the electric field is not properly 
modelled the resulting deflections are overestimated and the couplings 
in the charge and momentum equations are underestimated. Thus, for 
thick piezoelectric layers the assumption of a constant electric field is 
not adequate, specially close to the resonance. The results reported by 
Gopinathan et al [1] suggest that the theories currently used to model 
TWUM stators, whose Ars are typically less than 20, give rather poor 
prediction of the displacements and electric potentials for excitation 
frequencies close to the resonant frequency.

Figure 6: Cross section showing the inner supporting plate
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5. CONCLUSIONS

Articles from different areas which are closely related to the 
modelling of the stator of TWUMs were reviewed in this work. Thus, 
important issues relevant to this latter problem were identified from 
the areas of vibration of annular plates, laminated plate theories, and 
modelling of piezoelectric transducers.

Some possible future direction for improvement of current models 
and general needs are enumerated now.

i. The effect of different material properties and dimensions of the 
laminates on the efficiency, electromechanical coupling, and output 
power of the stator is to be investigated in more detail.

ii. The charge equation needs to be explicitly included in the 
mathematical formulation to properly predict the displacement and 
the electric field inside the piezoelectric layers, close to resonance, as 
suggested by recent works [45,1].

iii. The use of shear deformation (or higher order) LPT together 
with approximated solution methods such as Ritz’s and finite 
difference methods would allow to model radial variation of the stator 
thickness and perform parametric optimization of the stator.
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